Solid State Physics

Thursday, January 12, 2006

Lecture 2: Bravais Lattices

A lattice is a regular arrangement of an infinite set of points in space. A Bravais lattice is one where every point looks the same as every other point. You can build any lattice from a Bravais lattice by "decorating" it, in which case we call it a lattice with a basis. We show how to construct the Wigner-Seitz cell, a particular type of unit cell. Roger Penrose, mathematician, came up with a way to tile space that has (in a manner of speaking) five fold symmetry, and never repeats. The patterns are beautiful. Be sure and google Penrose tiles.

Audio

Links to this post:

Create a Link

<< Home